日本大百科全書(ニッポニカ) 「渦」の意味・わかりやすい解説
渦
うず
vortex
流体(気体または液体)の一部がこまのように回転しているとき、その部分は渦運動をしているという。また、その部分を渦という。たとえば、鳴門(なると)の渦潮は大きな水の渦で、台風は空気の渦である。茶碗(ちゃわん)に入れた水をスプーンでかき回すと、茶碗の中の水全体がこまのように回転するので、水全体は一つの渦巻と考えることができるが、茶かすを浮かべて細かく観察すると、水の各部分はそれぞれ異なる回転運動をしていることがわかる。たとえば、中心付近の茶かすはぐるぐる回転するのに対して、中心を外れた茶かすはその姿勢を保ったまま円運動をする。すなわち、茶碗の中心付近の水の部分は自転をするのに、中心を外れた水の部分はほとんど自転をしない( )。この自転をする水の部分が渦である。
川の流れのように、一般に流体が運動する場合、流体全体としての運動はきわめて複雑であっても、その各部分を考えると比較的簡単である。すなわち、小さい球状の部分をとって考えると、それは自転しながら並進運動を行っている。その並進運動の速度vがその点での流れの速度である(渦度(うずど)という。円筒形の容器に水を入れて、中心軸の周りに一定の角速度Ωで回転すると、やがて水は容器と一体となって回転する。このとき、中心から半径rのところの水はv=Ωrの速度で円運動をする。このとき
流速×円周=2πΩr2
=渦度×円の面積
の関係がある。この場合、水の各部分は同じ自転の角速度Ω、したがって渦度ω=2Ωをもつので、それに面積を掛けた前式の右辺は、半径rの円に含まれる渦の総量を表すと考えられる。これを渦の強さという。一方、「流速×円周」は円周に沿う循環とよばれる。一般に、任意の閉曲線Cについて、流速の接線成分vsとCの線要素dsとの積vsdsを加え合わせた量
を、Cに沿う循環といい、
Γ(C)=Cに含まれる渦の総量
という関係がある( )。流れの中の流体の微小部分(これを流体粒子という)をとると、ある回転角速度Ωで自転しながら、ある速度vで並進運動をしている。その自転軸の方向に近接した流体粒子をとると、それはまたある角速度で自転している。このように次々と自転軸をつなぎ合わせていくと、流体粒子は数珠(じゅず)玉のようにつながって、流体の細い紐(ひも)ができる( )。これを渦糸(うずいと)という。また、数珠糸に相当する曲線を渦線(うずせん)という。つまり、渦線は自転軸を連ねてできる曲線で、その曲線を軸として流体が回転運動をしていることを示す。いま、一つの小さい閉曲線上の各点を通る渦線を考えると、渦線を壁とする管ができる。これを渦管(うずくだ)という。渦管の任意の点での断面積σと渦度の大きさωとの積Γ=ωσは一定で、渦管の強さとよばれる。渦管の細いところでは流体の回転は速く、太いところでは遅い。竜巻やつむじ風は、近似的に1本の渦管のように考えられるが、地面に近いところでは回転は遅く、地面から離れて細くなったところでは回転が速い。細い渦管に含まれる流体の部分が、すなわち前述の渦糸である。
[今井 功]
渦糸の性質
空気や水のような流体は粘性が小さい。粘性がまったくないような流体を完全流体という。完全流体の中では渦は新たに発生することもなく、またいったん発生した渦はいつまでも消滅することはない。これをラグランジュの渦定理という。完全流体の中の渦糸は時々刻々に変形しながら流れにのって運動するが、その強さΓ=ωσはいつまでも変わらない。伸びると断面積が減って自転の角速度を増す。渦糸は流れの中で中断することはなく、流れの境界から境界まで伸びているか、あるいは閉曲線をつくるかのいずれかである。後者を渦輪(うずわ)という。たばこの煙の輪は渦輪の一例である。閉曲線Cに沿っての循環Γ(C)はCを貫く渦糸の強さの総和を表すから、完全流体ではラグランジュの渦定理により、流体に固定した閉曲線に沿っての循環は時間的に一定不変である。これをケルビンの循環定理という。
[今井 功]
渦の発生
物体に流れが当たる場合、粘性のために流速は物体表面の薄い層の中で急にゼロまで下がる。この薄い層は境界層boundary layerとよばれ、静止した物体と流れる流体に挟まれて回転する、ころの役割を演じる(
)。これは自転する流体として渦の一種である。つまり境界層は渦の層である。境界層が物体表面からはがれて流れの中に押し出していって分裂すると大小さまざまな渦ができる。[今井 功]
渦の量子化
液体ヘリウムは絶対温度2.2K以下の極低温では超流動性をもつ。超流動流体では量子効果が現れ、ケルビンの循環定理は
の形になる。ただし、hはプランク定数、mはヘリウム原子の質量である。このように循環は量子化されてとびとびの値をとる。循環は閉曲線を貫く渦糸の強さにほかならないから、これは渦の量子化を意味する。液体ヘリウムの中にイオンを打ち込むとき、イオンによって小さい渦輪がつくられるが、その強さΓが前の式のn=1で与えられることが実験的に証明された。これは、液体の運動というマクロの現象にも量子的効果が現れることを示すものとして重要である。
[今井 功]