運動(物体)(読み)うんどう(英語表記)motion

翻訳|motion

日本大百科全書(ニッポニカ) 「運動(物体)」の意味・わかりやすい解説

運動(物体)
うんどう
motion

物体が空間において時間とともに位置を変えること。これは観測者によって違って見える相対的な運動である。また、物体の性質が時間的に変化することを含めていうこともある。運動を表すには、各時刻における物体の各部分の位置を表すための座標系を定める必要がある。私たちの周りにある物体を一つ、たとえば野球のボールを思い浮かべよう。ボールは変形したり、ちぎれたりすることもあるが、まず、変形しないものとして考える。そうすると、その運動は、重心の運動と、重心の周りの回転運動とによって表すことができる。このように、物体の運動を表すには、その対象に応じた一定の数の変数が必要である。これはその対象が生じることのできる運動の種類と範囲を表すものなので、これを対象のもつ自由度という。ボールの例では、重心運動を表す3個の自由度と回転運動を表す3個の自由度が存在する。

 外部からの力がないとき、運動量・角運動量・運動エネルギーなどの保存則が成り立つ。すなわち、物体に外から何の力も働いていないときは、重心は等速直線運動をし、また、回転運動の回転軸も回転速度も変わらない。

[町田 茂]

万有引力による運動

しかし、投げ上げられた野球のボールはどこまでもまっすぐに飛ぶことはなく、やがて落ちてくる。これは、ボールに対して何か力が働いているからである。地球上の物体はすべて地球の中心方向に向かう力を受けており、その大きさはその物体の質量に比例する。二つの物体の間には、それらの質量の積に比例し、それらの間の距離の2乗に反比例する引力が働く。これを万有引力といい、地上の物体に働く地球からの万有引力を重力という。地上で物体を斜め上方に投げ上げると、重力によって下方に引かれ、空気の抵抗を無視すれば、その軌道は図Aのように放物線となる。ある時刻における重心の位置をPとすると、物体がP点にあるときの速度は、P点における放物線の接線の方向を向いた一つのベクトルで表される。加速度は重力と同じ方向をもつから、鉛直下方に向いた一つのベクトルで表される。その次の瞬間における速度は、それらを合成したものとなる。加速度は外から物体に働く力に比例しているので、外力がなければ加速度はなく、物体は元の速度でいつまでも進む。これを慣性運動という。

 太陽を回る惑星の運動は、太陽と惑星との間の万有引力のために、太陽を焦点の一つとする楕円(だえん)上の運動となる。地球を回る月あるいは人工衛星の運動も同様であって、太陽を地球に、惑星を月あるいは人工衛星に置き換えればよい。万有引力で引き合う二つの物体がある場合、その運動としては、一方を焦点の一つとする楕円軌道ばかりでなく、双曲線および放物線の軌道も可能である。彗星(すいせい)のなかには太陽を焦点とする双曲線軌道上を運動するものもあり、それらは太陽の近くを1回通過すると、ふたたび太陽の近くにくることはない。物体の運動は一定の周期で繰り返される周期運動と、それ以外の非周期運動とに分けることができる。万有引力によって相互作用する二つの物体の場合、楕円軌道ならば周期運動であり、それ以外は非周期運動である。

[町田 茂]

回転運動

物体には大きさがあるから、重心の運動だけでなく、重心を通る一つの軸の周りに回転運動をする。たとえば、地球の重心運動は太陽を焦点の一つとする楕円軌道上の運動(公転)であり、重心の周りの回転運動は北極と南極を結ぶ軸の周りの回転運動(自転)である。物体の運動を、自転している地球に固定した座標系でみると、静止座標系でみるのと異なり、見かけ上、ある種の力(コリオリの力)が重力などの外力のほかに働いているようにみえる。現実の物体の運動は、重心の運動と重心の周りの回転運動ばかりでなく、体積変化を伴わない変形、圧縮と膨張など体積変化を伴う変形などがあり、ときとして分裂、融合などもおこる。これらの複雑な運動は、重心運動や回転運動と違って、外力とその物体の質量あるいは慣性モーメントだけでは決まらず、問題にする物体の構造に依存する。

[町田 茂]

分子運動

物体の微細構造を考えてみると、物体は多数の分子・原子の集まりであり、それらの分子・原子は、目には見えないが、ある種の運動をしている。一定温度の一つの容器に気体が閉じ込められている場合、気体の分子は、温度で決まる一定の速度分布をもってあらゆる方向に運動しており、分子の運動エネルギーの平均値は、その気体の絶対温度(摂氏温度に273℃をプラスしたもの)に比例している。固体結晶の場合には、分子・原子あるいはイオンが結晶格子点を中心として微小振動をしており、温度を高くしていくと、振動・振幅が大きくなって、ついには隣の格子点への移動がおこり、結晶は融解して液体となる。液体の運動もそれを構成する個々の分子の運動からなる。液体に浮かべた花粉の粒を顕微鏡で見ると、不規則な運動が見え、その平均の速さは温度が上がると速くなる。これは液体の分子の花粉への衝突によるものであって、液体の温度が上がると、分子の平均の運動エネルギーが大きくなることを示している。分子運動によるこのような不規則な運動をブラウン運動という。

[町田 茂]

周期運動

ある時刻における運動状態(位置と速度)が一定の時間(周期)ののちに再現されるとき、その運動を周期運動という。滑らかな床の上に長さlのばねを置き、その長さを少しだけ変えると、その変化の大きさに比例する力が働いてばねを元に戻そうとし、ばねは振動する。図Bのようにばねの端の平衡点からの変位をxとすると、その時間的変化は
  xAsin(2πt/Tb)
と表すことができる。Aは振幅、Tは周期、tは時刻、bはばねの最初の位置によって決まる定数である。このように、力が変位に比例するときの振動はサイン関数(正弦曲線)で表され、このような振動を単振動あるいは調和振動という。振り子の運動はその代表的なもので、長さLの糸につるされ、小さい振幅で振動する振り子の周期は、gを重力加速度とするとき、

である。現実の物体の周期運動は多くの場合純粋な単振動ではないが、異なる周期と振幅の多数の単振動を重ね合わせたものとして表すことができる。

[町田 茂]

流体の運動

液体を巨視的にみるとき、それは固体と異なり、流体としての運動をする。液体を二つの平行な境界で挟まれた領域内で一方向に流すと、速度分布をもった流れが生じる。これを層流という。しかし、ある程度以上の速さになると、液体の粘性のために、層流が壊れて、きわめて不規則な流れになる。これを乱流という。液体の表面には波が生じる。波の山あるいは谷が一定方向に進む場合を進行波といい、進行せずにそれぞれの場所で山と谷が繰り返される場合を定常波という。波面の振動の仕方は弦や膜を張った場合も同様であって、たとえば両端を固定した長さlの弦の場合、定常波の波長は2l/nn=1,2,……)となり、また波長に応じて決まる一定の固有振動数で振動する。振動に外から力を加えた場合、外力の時間変化の周期が固有振動数の一つに対応する周期をもつと、振動体は共鳴振動をおこして、その振幅は非常に大きくなり、ついには振動体は壊れてしまう。重い車が通っても壊れない橋が、風あるいは人が通ることによって激しく振動し始め、ついには破壊してしまうことがあるのはその例である。

 水面の波が進行するとき、波をつくる液体の部分の動きは図Cのように円運動をしている。波のもっとも重要な性質の一つは、二つ以上の波を重ね合わせたり分解したりできることであるが、現実には重ね合わせができなくなる限界がある。その限界を越えると、いわゆる非線形現象が現れる。先に述べた乱流やジェット機が発生する衝撃波もその例であるが、われわれがよくみている例に、海岸に打ち寄せる波の崩れがある。

 海岸に打ち寄せる波は、岸からある程度以上遠い所では波の山と谷が整然とうねっているが、海が浅くなる所で波頭が崩れてしぶきとなり、それから岸までは小さな波となる。現実の液体はすべて底があるから、波を重ね合わせて山と谷を深くしようとしても、その深さは底までの深さ以上にはできない。すなわち、底までの深さが谷の深さよりも小さくなると、非線形性が現れる。海岸に打ち寄せる波の形が崩れてしぶきをあげるのは、このためである。実際、深度が一定の線が海岸線とほぼ平行している場合には、しぶきができる線も海岸線とほぼ平行しており、海岸が切り立って急に深くなっている場合には、波が岸にぶつかるまで波の形は壊れない。

 液体を容器に入れておくとき、液体の表面は水平である。しかし容器を台にのせて回転させると、液体の表面は水平ではなく、真ん中がくぼんだ円錐(えんすい)形になる。これは、回転の中心から遠い部分ほど遠心力が大きいためである。回転する容器とともに回転する座標系では容器は静止しているが、液面は水平ではなく、液体には見かけの力が働くようにみえる。

[町田 茂]

荷電粒子の運動

電場あるいは磁場の中に荷電粒子があるときの運動は、荷電粒子が場から受ける力に支配される。粒子の荷電をq、電場の強さをE、磁場の強さをH、荷電粒子の速度をv、光速度をcとすると、電磁場の中で動く荷電粒子が受ける力は
  FqE+(q/c)v×H (ガウス単位系)
で、これをローレンツ力という。電場が及ぼす力は電場の方向に作用するが、磁場が及ぼす力は、粒子の速度の大きさに比例し、粒子の速度および磁場の方向と垂直な方向に作用する。このため、一様な磁場Hの中で運動する電荷qの粒子は、速さvを変えずに運動し、初速度vHに垂直のとき半径rccMv/|q|Hの円周上を運動する。ここでMは粒子の質量で、このような運動をサイクロトロン運動、ωc=|q|H/Mcをサイクロトロン振動数、rcvcをサイクロトロン半径という。初速度にH方向の成分があると螺旋(らせん)形の運動となる。

[町田 茂]

電磁波とパルス

電磁場に生じた波動が電磁波である。それらを波長の短いほうから順に並べると、γ(ガンマ)線、X線、紫外線、可視光線、赤外線、マイクロ波、短波、中波、長波となっている。波としての性質は、弦や流体の表面の場合と違わないが、無線通信、テレビ、ラジオなど広い意味の通信に使われる電波は一つの振動数だけではできない。純粋に一つの振動数の波はどこまでも無限に同じ形で伝わり、そのため、波がきているということ以上の情報を伝えることができないからである。したがって、信号を伝えるにはパルスが必要である。

 パルスとは、有限の時間間隔を除いては振幅をゼロとみなすことのできるような進行波である。図Dは、t0より過去とt0Tよりも未来では波がないとみなすことのできるパルスである。このようなパルスは、ある周波数の間にだけ分布する周波数の波動を重ね合わせてつくることができ、パルスがゼロでない時間間隔Tは分布する周波数帯の幅に逆比例する。このようなパルスの強さ、継続時間、パルスとパルスの間の時間間隔、パルスの形などを変えて組み合わせることにより、複雑な情報を送ることができる。

 私たちが日常的に見る物体に対してはニュートンの運動方程式が成り立つが、光速度に近い速度をもつ物体に対しては相対性理論を使わなくてはならない。また、原子・素粒子などミクロの粒子に対しては量子力学を使わなくてはならない。

[町田 茂]

『谷藤悃著『安定の条件――つりあう』(1979・法政大学出版局)』『Paul G. Hewitt、John Suchocki、Leslie A. Hewitt著、小出昭一郎監修、吉田義久訳『物理科学のコンセプト1 力と運動』(1997・共立出版)』『飯島徹穂・佐々木隆幸・青山隆司著『アビリティ物理 物体の運動』(1999・共立出版)』『穴田有一著『運動と物質――物理学へのアプローチ』(2000・共立出版)』


出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例

今日のキーワード

焦土作戦

敵対的買収に対する防衛策のひとつ。買収対象となった企業が、重要な資産や事業部門を手放し、買収者にとっての成果を事前に減じ、魅力を失わせる方法である。侵入してきた外敵に武器や食料を与えないように、事前に...

焦土作戦の用語解説を読む

コトバンク for iPhone

コトバンク for Android