日本大百科全書(ニッポニカ) 「宇宙開発」の意味・わかりやすい解説
宇宙開発
うちゅうかいはつ
space exploration
space activities
space development
大気圏外の、いわゆる宇宙空間に光学カメラやレーダーなどの観測機器や人間を送り出し、それを基礎にして新たに知識を増やしたり、あるいは直接に人間の生活に役だたせようという一連の活動。アメリカなどでは宇宙探査space explorationが用いられているが、日本では英語でspace developmentと表現することが多く、space activities(宇宙活動)も好んで用いられている。大気圏外での観測は、それまでの地上からだけのものからは想像もされなかった新しい知識を提供したし、宇宙空間での飛行は、画期的でさまざまな宇宙空間利用の道を開いたのである。
第二次世界大戦後のミサイルギャップ(ミサイル技術の格差)のなかで繰り広げられた米ソ二大国による国威発揚を目的とした宇宙開発競争は、アメリカのアポロ計画による有人月面探査終了後、アメリカの経済・社会的な問題などもあって、徐々に減退し始めた。1980年代後半に入ると世界的な地球環境保護意識の高まりから、人工衛星によって地球を監視し、災害防止などにも役だたせる手段としての利用が脚光を浴びる形となった。さらに東西冷戦の緩和、終結という状況のなか、各国の宇宙開発は自国の技術を確保しつつ、財政上からも国際協力プロジェクトのかたちが始まり多様化し、そして商業衛星打上げから始まった宇宙ビジネスの時代に入っている。
[新羅一郎・久保園晃]
宇宙開発の歴史
宇宙開発の先史
宇宙開発という活動が始まるためには、まず宇宙へ目を向けることが先決であった。その歴史は意外に古く、すでに古代ギリシア時代に、ルキアノスによって月への旅行の空想物語が書かれている。東洋でも8世紀には、唐の玄宗皇帝(在位712~756)が仙術で月の宮殿に遊んだという伝説が生まれた。日本にも9世紀末の『竹取物語』がある。17世紀になると、ガリレイが望遠鏡で、月には山や平野があることを確認し、それによりルキアノスの古い本が見直され、版を重ねたという。そのころケプラーも、妖精(ようせい)が人間を月世界に連れて行くという小説を、惑星の運動に対する有名な三法則を発表したのちに書いている。当時はこうした空想旅行小説が大流行で、イギリスのゴドウィンFrancis Godwin(1562―1633)の『月世界の人』(1638)やフランスのシラノ・ド・ベルジュラックの『月への旅行』(1649)などが出版された。ゴドウィンはハクチョウに引かれて行くことを考え、ベルジュラックは一種のパチンコ風のもので飛んで行くことにした。
[新羅一郎・久保園晃]
科学的な発達史
19世紀もなかばになると、科学知識がしだいに進み、一般的になった。フランスの小説家ベルヌが、砲身300メートルの巨砲で、容器に入れた人間を発射する『地球から月へ』を出版した。また、アメリカの天文学者ヘールは『煉瓦(れんが)の月』を書いて、のちの人工衛星の考えを発表した。19世紀末にはドイツのガンスウィントHermann Ganswindt(1856―1934)がロケット宇宙船の着想を世に問うたが、ロケットの理論を初めて本格的に展開したのはロシアのツィオルコフスキーである。彼はロケットの質量比とか噴射速度の重要性を明確にし、1903年に論文「ロケットによる宇宙空間の探究」を発表した。やがてアメリカのゴダードは1919年に「きわめて高い高度に到達する方法」という論文で、多段ロケットにより月へ到着することを述べた。彼はまた1926年には最初の液体燃料ロケットの飛翔(ひしょう)実験に成功した。多段ロケットの使用法をさらに深めたのはドイツのオーベルトで、1923年に『惑星間空間用ロケット』を書き、宇宙飛行にはロケットが必須(ひっす)であることを明確に述べた。そして1942年、それまでのものより画期的に大きく、しかも誘導装置を備えたV2号ロケットが出現する。V2号そのものはドイツの新兵器の一つであったが、その開発者フォン・ブラウンの胸中には宇宙飛行のことが去来していたに違いない。
[新羅一郎・久保園晃]
宇宙開発の科学技術的基礎
地球の引力に逆らって宇宙空間に乗り出すうえでまず必要なことは、引力に打ち勝つことであり、それにはロケット技術の発展が第一の条件であった。ロケットは、推進剤を多量に短時間で消費することによって強大な推進力を発生させる。しかもこの力は真空中でも発揮される。なお、ロケット本体は、できるだけ軽量であると同時に、十分な強度を保っていることが重要である。発射されたロケットなどの飛行体に対しては、その軌道や姿勢が適切に誘導・制御されることが不可欠であり、電波誘導をはじめ慣性誘導の技術が発達した。搭載機器についても、所定の期間完全に作動し、かつ観測結果がはるかかなたから地上に伝達されるためには電波技術が確立していなければならない。ロケット全体としては非常に部品が多く、しかもそれらの信頼性が高いことが要求される。この信頼性および安全性を調和よく高めて効果をあげるために、全体のシステムをいかに組み立てるべきかという問題が生まれ、ここからシステム・エンジニアリング・マネジメントの分野が生まれた。これらの技術開発は先端的なものばかりであり、同時に多くの関連分野をそこに集中させることが必要である。単に一つの研究所や会社では手に余る事業であるため、国家予算でまかなわれる巨大科学技術(ビッグ・サイエンス)とよばれるものを生むことになり、宇宙開発という大事業が国家の威信の象徴ともみられるようになった。同様のことが、第二次世界大戦にその端を発した原子力開発にもみられる。
[新羅一郎・久保園晃]
宇宙開発の目的
宇宙開発が取り上げられたのは、第二次世界大戦後の、いわゆる冷戦の時期であった。大陸間弾道弾と人工衛星打上げ用のロケットとでは基本的にはほとんど差がないという事情もあって、宇宙開発の第一の目的は軍事利用にあった。長距離の偵察用飛行機にかわって、偵察用人工衛星の価値が高く評価されたのである。第二に国の力の誇示、すなわち国家の威信が重視された。たとえば、スプートニク1号やウォストーク(ボストーク)1号の打上げが成功したときソ連は、「これは社会主義体制の勝利だ」と誇った。第三が純粋に科学的な基礎研究の手段としての重要性であって、これによって新しく宇宙科学という学問の分野が生まれた。第四に、人工衛星を人間生活に直接役だたせようという意図であって、そのための人工衛星を実用衛星という。実用衛星の最初は1960年の気象衛星タイロス1号で、それ以来、通信、気象観測、航行、測地、地球資源探査、地球環境保全、宇宙環境利用など各種の衛星が打ち上げられ、大きな成果をあげている。
なお宇宙開発がもたらしたものとして、宇宙技術の波及効果(スピンオフ)がある。先端技術を駆使するものであり、その技術は各方面に利用されていった。たとえば、ロケット機体用の軽量・高張力鋼開発、ロケット弾頭とか再突入時のためのセラミック開発技術、人工衛星用の電源の応用、遠距離通信技術の発展、無重量状態での材料科学、生命科学などさまざまな活用である。
また、宇宙開発による国際協力の推進も見逃せない。宇宙平和利用条約が生まれ、観測結果を利用しあったり、宇宙計画を国際協力で遂行しようという動きが盛んになってきた。
[新羅一郎・久保園晃]
太陽系の無人宇宙探査計画
宇宙探査の手始めは観測ロケットによる大気圏の物理特性の解明であった。ドイツの兵器として登場したV2号は、1946年秋、アメリカで打ち上げられ、地上からでは観測されない短紫外線が太陽から放射されていることを明らかにした。それ以来、今日まで、多くの観測ロケットが打ち上げられたが、観測時間を拡大し、また局地的な観測を全地球的なものに広げるために人工衛星が誕生した。
世界で初めての人工衛星はソ連のスプートニク1号で、1957年10月4日に打ち上げられた。直径58センチメートル、重さは約84キログラムの球形で、超高空の大気密度を測定した。アメリカ初の人工衛星エクスプローラ1号(1958年2月1日打上げ)は、地球をドーナツ状に取り巻く放射能帯(バン・アレン帯)を発見した。このように科学研究を目的とした人工衛星を科学衛星という。主として無人のものをさすことが多いが、有人の宇宙船でももちろん、その主たる目的は科学研究にある。人工衛星の軌道が地球のまわりから伸びるにつれ、太陽から放出される太陽風とか、地球を立体的に取り巻く磁気圏の状態なども判明してきた。
一方、地球の引力を脱出して太陽の周囲を回る人工惑星が出現するとともに、月、金星、火星、水星、木星、土星などを探究する各種の宇宙探査機が活躍するようになった。その最初の成功は、1962年8月27日に打ち上げられたアメリカのマリナー2号で、109日の飛行ののちに、金星から3万4000キロメートルのところを通過し、金星の表面温度やその大気の構成などを測定し報告してきた。1964年11月28日打上げのマリナー4号は火星から約9800キロメートルまで接近し、表面の写真22枚を電送してきたが、期待された運河はなかった。
月への軟着陸に初めて成功したのはソ連のルナ9号(1966年1月31日打上げ)で、月面のパノラマ写真を送ってきた。惑星への軟着陸の最初はソ連の金星4号(1967年6月12日打上げ)で、その大気や気象を測定した。火星への初めての軟着陸はソ連の火星3号(1971年5月28日打上げ)で、同年12月に成功した。
水星探査機の始まりはアメリカのマリナー10号で、1973年11月3日に打ち上げられ、翌年3月に水星から640キロメートルまで接近し、水星表面が月面そっくりであることを確認した。
アメリカは1972年3月3日パイオニア10号を打ち上げ、それは翌年12月に木星に接近し、表面の模様や、木星の衛星ガニメデの奇怪な姿を電送してきた。パイオニア11号(1973年4月6日打上げ)も1974年12月に木星、1979年9月に土星に最接近して、それぞれ観測に成功した。パイオニア10号および11号は、1983年6月と1990年2月にそれぞれ太陽系を脱出した。一方、1977年9月5日アメリカからボイジャー1号が打ち上げられ、まず1979年3月に木星に接近したのち、1980年11月には土星に接近し、土星の環(わ)の微細構造や、土星の衛星タイタンを観測した。ボイジャー1号より少し前の1977年8月20日にはボイジャー2号が打ち上げられ、1981年8月に土星に最接近し、土星の環のより微細な構造を明らかにして、天王星に向かった。
[新羅一郎・久保園晃]
有人宇宙飛行計画
ソ連のスプートニク2号(1957年11月3日打上げ)にはイヌが乗せられ、宇宙で1週間を過ごしたが、それは、やがて人間が乗った宇宙船の出現を予想させるものであった。これに対抗してアメリカはマーキュリ計画を発足させ、有人衛星を実現しようとした。マーキュリ・カプセルは総重量1.3トンで1人乗りである。7人の宇宙飛行士が選抜され、彼らの訓練も始まった。ところがソ連でも1人乗りの宇宙船の計画が進んでおり、それは重さ4.7トンであった。ソ連は1960年8月には、イヌを2匹乗せたスプートニク5号を無事に回収し、有人飛行の間近いことを思わせた。そして、1961年4月12日、ついに有人飛行が実現した。宇宙船の名前はウォストーク(ボストーク)1号、搭乗者はガガーリン、1時間48分で地球を1周し、無事にソ連領内に着陸した。宇宙空間から地球をみたガガーリンは「地球は青かった……」という名言を残した。人間が宇宙に乗り出した最初の記録であり、ここに本格的な有人宇宙飛行時代が始まった。
ウォストークに遅れをとったマーキュリ計画は、翌1962年の2月20日に、グレンJohn H. Glenn(1921―2016)を乗せたフレンドシップ7号の地球3周に成功した。1人乗りの次には2人ないし3人乗りの宇宙船が登場する。1964年10月12日打上げのソ連のウォスホート(ボスホート)1号は3人乗りで地球を16周し、1965年3月18日打上げのウォスホート2号は2人乗りだったが、その1人レオノーフ(レオーノフ)А.А.Леонов/A. A. Leonov(1934―2019)は宇宙船から出て、世界初の船外活動を20分間行った。アメリカの2人乗り宇宙船は1965年3月のジェミニ3号から始まる。アポロ計画で必要とされたランデブーならびにドッキングの技術を習得するためである。最初のランデブーは、ジェミニ6号(1965年12月15日打上げ)とジェミニ7号(1965年12月4日打上げ)との間で1965年12月15日に成功した。続いてジェミニ8号は1966年3月16日、標的用の無人宇宙機アジェナと史上初めてのドッキングを行った。ソ連でもソユーズ4号(1人搭乗、1969年1月14日打上げ)とソユーズ5号(3人搭乗、1969年1月15日打上げ)との間でドッキングに成功し、5号の乗員2人が4号に移乗した。
1969年7月16日打上げのアポロ11号は7月20日に人類初の月着陸に成功した。月面に降り立ったのはアームストロングとオルドリンEdwin Eugene Aldrin Jr.(1930― )で、アームストロングはその際、「一人の人間にとっては小さな一歩だが、人類にとっては大きな飛躍である」との名言を残した。月までの往復の飛行時間は195時間19分であった。
ソ連のソユーズ11号(1971年6月6日打上げ)は、まえもって軌道に打ち上げられていたサリュート1号とドッキングし、搭乗者3人がサリュートに移乗して、各種の実験を行った。6月30日にソユーズは地球に帰還したが、搭乗者3人は死体で発見された。飛行時間は約570時間に及び、宇宙ステーションのはしりとなった。
ポストアポロ計画として1973年には、アポロ宇宙船打上げに使われたサターンⅤ型ロケットの第3段の内部を改造して宇宙ステーションとするスカイラブ計画が実施された。1973年5月14日、サターンⅤ型が打ち上げられ、無人の実験室(スカイラブ1号)が軌道に乗った。5月25日、月着陸部を除いたアポロ宇宙船(スカイラブ2号)がサターンⅠB型により打ち上げられ、スカイラブ1号とドッキングして3人が移乗した。そしてスカイラブ1号内で種々の科学技術実験を行い、滞宇宙日数28日で帰還した。次のスカイラブ3号の打上げは同1973年7月28日で、59日間宇宙に滞在した。最後のスカイラブ4号の打上げは同年11月16日で、滞宇宙の記録は84日間と延び、スカイラブ計画は成功裡(り)に終了した。無人のスカイラブ1号は1979年7月12日オーストラリア南西部一帯に分裂落下した。打上げ当初のその高度は440キロメートルであった。ソ連のサリュートはT7号まで打ち上げられ、ソユーズとはT7号までがドッキングを行った。このT7号は1982年8月19日打上げで12月10日に帰還した。同船には宇宙に行った2人目の女性宇宙飛行士サビツカヤSvetlana Savitskaya(1948― )が同乗した。
アメリカはスカイラブの次にはスペースシャトルの飛行を始めた。これは、機体を数十回にわたり使用・回収をし、費用の節約を図ろうというもので、科学技術の実験のほかに、次期計画の宇宙ステーションの組立てや、そこからの人工衛星の打上げなどを目的としている。
[新羅一郎・久保園晃]
世界および日本の動向
スプートニク1号以来世界で打ち上げられた人工衛星の数は、2007年12月末までに5942個に達する。そのうち、消滅したり回収されたりしたものも多い。これらの97%近くが人工衛星であり、正確な数は不明であるがその多くを軍事衛星が占めると推測される(アメリカは軍事衛星は打上げ後に軍事衛星として発表するが、ロシアはソ連時代から軍事衛星、科学衛星の区別なく、一括して「コスモス」と呼称し、その実体は軍事目的が多い)。
宇宙開発において、ソ連、アメリカが他の国々を大きく引き離してきたのは明らかであるが、それに続くのはフランス、中国およびインドといえよう。フランスでは中距離弾道弾の開発に力を入れ、それに手を加えて、1965年11月26日に国産のロケット「ディアマン」で自国製の人工衛星A1(42キログラム)を軌道に乗せた。日本は1970年(昭和45)2月11日に初めて「おおすみ」(24キログラム)を打ち上げた。続いて同年4月24日には中国が「東方紅」(173キログラム)を打ち上げたが、その重さは「おおすみ」の7倍を超えていた。中距離弾道弾から大陸間弾道弾へと開発を進めていたイギリスの進展は意外に遅く、自力で人工衛星を軌道に乗せたのは1971年10月28日である。「プロスペロ」(66キログラム)と命名され、「ブラックアロー」ロケットで、オーストラリアのウーメラ基地から打ち上げられたが、その後、ロケットの不具合が続きウーメラからの打上げは中止された。
[新羅一郎・久保園晃]
国際協力の形
自国産のロケットで自国製の人工衛星を軌道に乗せるほかに、自国製の観測計器を外国の人工衛星に積み込んで打ち上げたり、衛星そのものは自国産だが、打上げは外国に依頼する方法も珍しくない。
宇宙開発は、ロケットによる各種衛星の打上げから軌道への投入、運用、データ受信、処理や解析、さらには大気圏への再突入、落下、回収という一連のサイクルをもつ活動であり、元来、国境を越えた活動範囲をもつ。したがって経費もかさみ、1国、1機関ではまかないきれなくなっているのが現状である。科学的探査や地球観測の分野では、1個の衛星に多くの国の観測機器を搭載して共同研究とするケースが増えており、成果もあがったのである。
たとえば、1962年4月26日には、イギリス製の電離層観測器具を積んだエリール1号という衛星がアメリカから打ち上げられたし、同1962年9月29日には、カナダ製の衛星アルエット1号(145キログラム)がアメリカのロケットにより打ち上げられた。1964年12月15日にはイタリア製の衛星サンマルコ1号が、アメリカの射場からアメリカのロケットによりイタリア人チームの手で打ち上げられた。日本の気象、通信、放送の三静止衛星もアメリカNASAのデルタロケットにより1977年、1978年にそれぞれ打ち上げられた。
さらにはアメリカの木星探査機ガリレオやハッブル宇宙望遠鏡(NASAとESAの共同)、ヨーロッパの太陽極軌道観測機ユリシーズ(NASAとESAの共同)や、地球磁気圏の尾を観測する日本のジオテイル(NASAと宇宙科学研究所の共同)などの国際共同プロジェクトをあげることができる。
実用衛星分野でも、たとえば各国内用通信衛星をはじめ国際移動通信衛星機構(IMSO)、国際電気通信衛星機構(ITSO)、ヨーロッパ通信衛星機構(ユーテルサット)などの衛星は、国際宇宙ビジネスとして各国のメーカーに発注、製作されたうえ、それをさらに他国のロケットやアメリカのスペースシャトルで打ち上げ、各機関が運用するという形態が多くなっている。衛星打上げビジネスとして、ロシアや中国も、西側諸国より安価な信頼の高い打上げサービスを提供しようとしており、各衛星ユーザーとしても、利用する打上げロケットの選択には一大決心が求められている。
スペースシャトルが実用段階に入って、観測機器とか人工衛星そのものをスペースシャトルによって打ち上げるのが一般的になり、アメリカ国籍でない人が同乗することになった。すでに、1978年3月2日に打ち上げられたソ連のソユーズ28号にはチェコスロバキア人の宇宙飛行士が乗り込み、1977年9月29日から飛行を続けていたサリュート6号無人宇宙機とドッキングした。この方式の国際宇宙船は、その後、ポーランドや東ドイツとの間でも打ち上げられた。また1975年7月15日にはソユーズ19号とアポロ宇宙船とが同日に打ち上げられ、ドッキングののちに双方の宇宙飛行士が移乗して交歓した(アポロ/ソユーズドッキング計画)。そのときの最大の困難は英語とロシア語との会話の問題であったといわれる。宇宙開発において、国際協力はいろいろな形で進められている。2001年4月28日、民間人として初めてアメリカの実業家デニス・チトーが推定約2000万ドルでロシアのソユーズに乗り込み、国際宇宙ステーション(ISS:International Space Station)に移乗して6日間滞在し、商業宇宙旅行への始まりとなった。続いて2002年4月26日には、南アフリカの富豪マーク・シャトルが約2000万ドルを支払ってソユーズに乗り込み、ISSに約1週間滞在した。
ソ連で開発され1986年2月19日に打ち上げられた第3世代宇宙ステーション「ミール」への搭乗者も東欧圏に限らず、西側各国宇宙飛行士による利用も宇宙ビジネスとして行われた。ミールはその後、当初の基幹モジュール、クリスタル、クバント(2基)、スペクトルおよびプロリーダモジュールと増結されて、1996年4月には全重量約123トンの大型宇宙ステーションとなった。さらに冷戦緩和後は、ロシアも国際宇宙ステーション(ISS)計画に参加し、1995年6月から1998年6月にかけてISS計画の第1段階におけるスペースシャトル/ミール結合ミッションが計9回、米ロ宇宙飛行士の活躍の場となった。一方ミールは老朽化が進み、唯一の宇宙ステーションとしての任務は、第2段階の1998年11月20日(ISSの最初の構成要素「ザーリャ」打上げ)からISS建設に移行された。ロシアではミールの存続を求める声も高かったが、2000年12月ロシア政府は資金難のためミールの廃棄を決定、ミールは翌2001年3月23日に大気圏突入後、南太平洋に分裂落下して約15年の活動を終了した。
1984年アメリカ大統領レーガンの日本・ヨーロッパ・カナダへの参加要請で始まった新しいISS計画は、その後たび重なる設計変更があったが、1993年ロシアの参加という米ロ間の政治的決定を受け、世界15か国による最大規模の国際宇宙協力プロジェクトとなった。
一方、着々と有人活動の準備をしてきた中国は、4回の無人宇宙船「神舟」を打ち上げ(1999年11月21日、2001年1月10日、2002年3月25日、同年12月30日)、2003年10月15日には、初の有人宇宙船「神舟5号」の打ち上げに成功し、世界で三番目の有人宇宙船打ち上げ国となった。
[新羅一郎・久保園晃]
各国の宇宙開発体制とそのおもな機関
日本では、宇宙開発・利用政策を受け持つ政府機関として従来の宇宙開発委員会があり、宇宙開発に関する重要な政策を企画・審議して内閣総理大臣に意見を述べていたが、2001年(平成13)1月の中央省庁再編により同委員会は文部科学省下に所属し、宇宙開発事業団(NASDA(ナスダ))の活動のみに関与するという過渡的存在となった。
その後、抜本的な宇宙基本法の決定(2008年5月21日)および国としての宇宙開発戦略本部が発足し、宇宙基本法が策定されている。
研究機関としては航空宇宙技術研究所(NAL(ナル)。2001年4月より独立行政法人)、宇宙科学研究所(ISAS(アイサス)。文部科学省)などがあった。後者の付属施設として鹿児島県肝付(きもつき)町内之浦(うちのうら)に鹿児島宇宙空間観測所(打上射場)などがあった。このほかに、文部科学省、総務省および国土交通省の共管特殊法人である宇宙開発事業団、その付属施設として種子島(たねがしま)宇宙センター(打上射場)や筑波(つくば)宇宙センターなどがあった。これら、文部科学省下であった宇宙3機関(宇宙開発事業団、航空宇宙技術研究所、宇宙科学研究所)は、2003年10月、統合され新たな独立行政法人、宇宙航空研究開発機構(JAXA(ジャクサ))となった。これに伴い、鹿児島宇宙空間観測所は、内之浦宇宙空間観測所に改称された。
アメリカの航空宇宙局(NASA(ナサ))も政府の一機関であり、アメリカ全土にまたがる施設(14か所)をもち、航空・宇宙関係の研究と開発を行っている。付属機関として、エームス研究センター、ジョンソン宇宙センター、マーシャル宇宙飛行センター、ケネディ宇宙センター、ゴダード宇宙飛行センター、ジェット推進研究所、ラングレー研究センター、グレン研究センター、ステニス宇宙センターなどのほか、全世界に点在する人工衛星追跡施設やデータ取得施設をもつ。
ヨーロッパでは、ヨーロッパ宇宙研究機構(ESRO)とヨーロッパロケット開発機構(ELDO)とが別々にあったが、1975年5月にヨーロッパ宇宙機関(ESA)に統合された。加盟国はオーストリア、フランス、ドイツ、イギリス、イタリア、オランダ、スイス、ベルギー、デンマーク、スウェーデン、スペイン、アイルランド、ノルウェー、フィンランド、ポルトガルの15か国(カナダは協力国)で、本部はパリにある。フランスはESAの重要メンバーであるが、それとは別に国立宇宙研究センター(CNES)を有する。ドイツもESAの主要メンバーであるが、宇宙研究開発の実施機関として国立航空宇宙研究所(DLR)をもっている。
一方、東西冷戦緩和後、ロシアもロシア宇宙庁(RSA)を新しく発足させ(その後ロシア航空宇宙機関=RASAと改称)、大国として自国および国際協力での宇宙開発や商業衛星打上げに積極的である。
[新羅一郎・久保園晃]
宇宙開発の将来
生命が地球に誕生して以来、人類は海から陸へ、陸から空へとその活動領域を拡大してきた。生命の進化の延長線上にあるわれわれ人類は、いまや科学技術を駆使し、その活動領域を宇宙へと拡大しつつある。
人類は古来、宇宙、太陽系の存在、地球およびそこに住む生命体の誕生といった根源的な疑問への答えを探求し続けてきている。この疑問にこたえる宇宙の科学的探求活動は、人類の知的フロンティアの拡大を目ざすものとして、ますます重要なものとなってきている。これらによって得られるさまざまな知見や知識は、新しい宇宙観・地球観・生命観を生み出し、新たな思想や文化の創造、知的で成熟した社会の実現に貢献するものと考えられる。
衛星通信・放送、全地球測位システム(GPS)による航空・船舶・自動車等のナビゲーション、気象衛星を用いた天気予報は、すでに人々の生活に不可欠なものとなっている。このような衛星システムの利用は今後ますます高度化し、将来の高度情報通信社会を支える重要なシステムとして、質の高い豊かな生活に貢献するものである。また、無重量などの宇宙空間の特徴を利用した新しい材料・医薬品等の開発についても進展が期待される。
一方、人工衛星の利用により、気象・海洋・地表の変化、地球の温暖化、緑の減少と砂漠化の進行、オゾン層の状況、災害の発生状況等を定期的かつ高精度で観測することが可能と考えられ、宇宙開発は地球科学の推進や地球環境の保全等に大きく貢献する可能性をもつといえよう。
また、厳しい環境への対応や高い信頼性が要求される宇宙技術は、幅広い分野の科学技術を結集することが要求される先端的な総合技術である。宇宙技術を開発し、高度化していくたゆまぬ努力は、材料、コンピュータ、ロボット、エレクトロニクス、通信、情報処理等のさまざまな分野の新技術の創出に貢献するとともに、これらの技術を利用した付加価値をもつ新しい産業を創出することに貢献する可能性を秘めている。これらと併行して一般人の宇宙旅行ビジネスも徐々に本格化されよう。
さらに、未知なる宇宙は次世代の青少年にとって最大の挑戦の対象の一つであり、宇宙開発を通じてこの宇宙への夢とチャレンジ精神を青少年に引き継いでいくことは、科学技術のみならず幅広い分野にわたって将来の人材の養成を促し、人類の経済社会の活力の維持に貢献すると考えられる。
日本においては、このような宇宙開発のもつ意義を十分に認識し、1955年(昭和30)、東京大学生産技術研究所でのペンシル・ロケット研究の開始以降、関係者の営々たる努力が積み重ねられてきた。その結果、宇宙科学については、多くの分野で国際的にも高い評価を得る成果をあげている。また、通信、放送、気象、地球観測、宇宙環境利用等の実利用分野の宇宙開発についても、順次自主開発努力を拡大し、H-ⅡAロケットおよびH-ⅡBロケットの打上げや各種人工衛星の開発等により、分野によっては国際的な水準の技術や能力を得るに至った。しかし、アメリカ、ヨーロッパ、ロシア、中国が力を入れはじめた宇宙商業ビジネス、とくに衛星打上げサービス分野への参入には打上げロケットのコスト低減、信頼性の向上など克服すべき問題が多い。
目を海外に転ずれば、アメリカおよびロシアの宇宙開発においては、国威発揚や軍事的な意味合いの強いプロジェクトの推進から、経済性と効率性を重視して、宇宙技術の軍民転換を図り、将来へ向けた先端技術を開発することに重点を移しつつある。これに、世界の打上げ市場をリードしているヨーロッパ、独自の立場で自主技術開発を推進してきた中国が加わって、世界の宇宙開発においては商業利用を重視する動きが一段と強まっている。また、従来、日本、カナダ、ヨーロッパ、アメリカの4極で進められていた国際宇宙ステーション計画に、ロシアが新たにパートナーとして参加するなど、大きな宇宙開発のプロジェクトについては、国際協力を重視するという流れがこれからの世界の宇宙開発の主流になりつつある。このように、世界の宇宙開発は商業利用と国際協力の重視が今後の重要な課題となるものと考えられる。
以上のような内外の大きな情勢の変化のなかで、日本の宇宙開発はさらに新たな展開をしていくべき段階にある。日本としては、宇宙開発のもつ意義を改めて確認するとともに、世界における宇宙開発の商業利用および国際協力重視の流れを十分認識し、これまでに培った宇宙開発の技術や能力を高めつつ、グローバルな視点にたった無人・有人の宇宙の本格利用を目ざして、宇宙ビジネスや世界の宇宙開発に積極的な役割を果たすことが、国民から強く望まれている。
[新羅一郎・久保園晃]
『山中龍夫・的川泰宣著『宇宙開発のおはなし』(1991・日本規格協会)』▽『キャロル・ストット著、的川泰宣監修(日本語版)、スティーヴ・ゴートン写真『ビジュアル博物館71 宇宙探検』(1998・同朋舎)』▽『中村浩美著『最新 宇宙開発がよくわかる本』(1999・中経出版)』▽『田中一郎編『21世紀の宇宙開発』(2001・科学技術振興協会)』▽『的川泰宣著『ロシアの宇宙開発の歴史――栄光と変貌』(2002・東洋書店)』▽『武部俊一著『宇宙開発の50年――スプートニクからはやぶさまで』(2007・朝日新聞社)』▽『笹本祐一著『宇宙へのパスポート3 宇宙開発現場取材日記』(2008・朝日新聞社)』▽『『歴史群像シリーズ 日本の宇宙開発――果てなき空間への果てしなき夢』(2009・学研マーケティング)』▽『日本航空協会編、刊『航空宇宙年鑑』各年版』▽『日本宇宙少年団編、的川泰宣・毛利衛監修『スペース・ガイド』各年版(丸善)』▽『中野不二男著『日本の宇宙開発』(文春新書)』▽『的川泰宣著『月をめざした二人の科学者――アポロとスプートニクの軌跡』(中公新書)』▽『中冨信夫著『NASA宇宙探査の驚異――「宇宙の姿」はここまでわかった』(講談社+α文庫)』
スプートニク1号
惑星探査機「マリナー」(イメージ図)
惑星探査機「パイオニア」(イメージ図)
惑星探査機「ボイジャー」(イメージ図)
アポロ11号による人類初の月面着陸と月…
宇宙実験室「スカイラブ」
人工衛星「おおすみ」
スペースシャトルの打上げ
木星探査機「ガリレオ」
ハッブル宇宙望遠鏡
国際宇宙ステーション(ISS)
実験棟「きぼう」
軌道科学宇宙ステーション「ミール」
種子島宇宙センター
ケネディ宇宙センター
ESA本部
H-ⅡAロケット
H-ⅡBロケット