遺伝
いでん
heredity
inheritance
元来はある種の形質が、親から子、子から孫へ伝えられる現象をいう。イヌの子は何代たってもイヌ、カエルの子はカエルであるのは、種特有の形質の基本的設計図が、親から子、子から孫へと伝えられるからであって、この設計図にあたる物質を遺伝質という。遺伝質は遺伝子の集合体であって、その担い手は普通、細胞核内の染色体にあるが、細胞質に存在する場合もある。
遺伝の現象を情報伝達の過程としてとらえれば、これには親世代と子世代の間の関係(縦の関係)ばかりでなく、細胞分裂に伴う細胞と細胞との関係(横の関係)も含めることができる。遺伝子は、初め仮定上の遺伝単位であったが、分子遺伝学の進歩により、今日ではその実体が明らかになった。すなわちDNA(デオキシリボ核酸)の特定の区域であって、塩基3個からなる情報素子(トリプレット)が数十ないし数百個連鎖して構成される情報単位ということができる。
[田島弥太郎]
高等生物のほとんど大部分は有性生殖を行う。この場合、雌親に由来する生殖細胞すなわち卵子と、雄親に由来する生殖細胞すなわち精子とが合体して受精卵が生じ、これが細胞分裂を行って増殖し、新しい個体を形成する。受精卵のもつ遺伝情報は、正確に同じものが生成されて新生細胞に伝えられていく。新個体形成にあたっては、両親から伝えられた遺伝質によって形質が規定されるが、この場合には多数の環境要因(物理的、化学的ならびに生物学的)の影響を受ける。たとえば、ハチやアリの受精卵が、育てられる餌(えさ)によって女王に育ったり、働きバチや働きアリに育つように、生物の形質は遺伝と環境との相互作用によって決まる。もちろん形質によってこの環境影響を強く受けるものと、比較的影響を受けにくいものとがある。生物の形質は、それが発現する過程で環境の影響を受けるが、遺伝質そのものは不変であって、環境は遺伝質まで変えることはできない。環境によって引き起こされた形質表現の変化は1代限りである。このことは、親が妊娠中にサリドマイドを服用したためにあざらし肢症(ししょう)となった患児が、親になって生む子がまったく正常であることをみれば明らかである。
[田島弥太郎]
高等生物では、生殖細胞形成にあたり、雌でも雄でも減数分裂がおこって染色体数の半減がおこる。これが受精により合体して元の数に戻る。このようにして2n→n→2n→nのサイクルが繰り返される。したがって、両親から受け取る相同染色体のそれぞれを遺伝子Aとaで標識しておけば、F1(雑種第一代)個体の配偶子形成にあたり、雌でも雄でもA配偶子とa配偶子とが同数形成され、それらの機会的結合によって、その子(F2)の代にはAA、Aa、aaの3種類の個体が1:2:1の比に生じてくることが期待される。この場合AAとAaとが同じくA表現型をとるとすれば、観察される分離比は3:1である(図A)。このことをオーストリアの遺伝学者メンデルは理論的に推察し、エンドウを用いて実験を行い、その結果を統計的に分析して、1865年に推論の正しいことを証明した。メンデルの推論した機構は、有性生殖を行う高等生物にはすべて当てはまるので、「メンデルの法則」と名づけられ、遺伝現象の基本原理となっている。
[田島弥太郎]
メンデルが研究の対象とした形質はすべてF2で3:1の分離を示したが、これは優性遺伝子に関しホモ型(AA)もヘテロ型(Aa)もともに優性形質を表現したためである。これに対しホモ型とヘテロ型とで表現を異にする場合がある。たとえば、オシロイバナではホモ型は赤、ヘテロ型はピンク色を示す。このような場合F2の分離は1:2:1となる。2対の形質を同時に実験の対象としてかけ合わせを行うと、典型的な場合9:3:3:1の比率で分離が行われる(図B)。ただし、二つの異なった対立形質に関する優性遺伝子の間に特別な相互作用が働く場合には、この比が変形されて9:3:4とか9:7とか12:3:1とか13:3のような分離比がみられる。
[田島弥太郎]
2対の対立形質のかけ合わせで、別々の親からきた二つの優性遺伝子がつねに反発して組換えがおこらなかったり、同じ親からきた二つの優性遺伝子がつねに相伴って遺伝して、その間に分離のおこらない場合などがみいだされた。前者を相反(そうはん)、後者を相引(そういん)と名づける。これは、対立遺伝子のそれぞれが、相同染色体の異なった対の上に座位する場合と、同一染色体上に存在する場合とにあたる。このようなことから、遺伝子は染色体上に相連なって座位していることがわかった。これを遺伝子の連鎖(れんさ)という。その後、これらの遺伝子の間には一定の割合で組換えがおこることが知られた。これが染色体の乗換え(交叉(こうさ))である(図C)。二つの遺伝子の存在する座位が染色体上で遠く離れているものほど、組換えのおこる率が高い。したがって、この関係を逆に利用すれば、組換え価の大きさから染色体上における遺伝子の相対的位置を定めることができる。遺伝子座位の相対位置を示す図を染色体地図という。
[田島弥太郎]
遺伝子が性染色体上に存在する場合には、遺伝子の分離と性との間に特別な関係が認められる。たとえば、雄がXY型の生物では、Y染色体上に座位する遺伝子によって支配される形質は、雄親から雄の子へと伝えられるが、X染色体上にある優性遺伝子をもつ雄を劣性の雌と交配させると、生まれる子のうち雄は雌親型、雌は雄親型となり、いわゆる十文字遺伝がみられる(図D)。
[田島弥太郎]
メンデルが実験に選んだエンドウの形質は、丸粒とか、しわ粒のように明確に区別できる形質であったが、生物の形質はこのようなものだけではない。たとえば、ヒトの身長や体重とか、ある種の酵素活性のように、その表現が小さいものから大きいものまで連続的で、どこで区別したらよいかわからないものがある。このような例では、多数の協力しあう遺伝子(同義遺伝子)が関係している場合が多い。このような場合、すべての遺伝子が等価に働くという理想的なモデルを考えると、数学的取扱いに便利である。数量的形質の表現は、遺伝子によるもの(遺伝変異σG2)のほかに、環境条件によってもたらされるもの(環境変異σE2)がある。生物の示す全変異に対する遺伝変異の割合を遺伝率h2というが、これは統計量の分散から次式で求めることができる。
h2=σG2/(σG2+σE2+σGE2) (ただしh2は0~1)
遺伝率は、発現される形質がどの程度遺伝に基づくものであるかを知るうえで便利なものである。
[田島弥太郎]
遺伝質を担う物質が染色体外に存在する場合には、メンデルの遺伝法則は適用されず、偏母(へんぼ)性の遺伝を示す場合が多い。このなかには細胞質遺伝や感染性遺伝が含まれる。細胞質遺伝の好例は斑入(ふい)りオシロイバナの場合である。この植物では1本の株に全緑の葉、全白の葉、斑入りの葉があり、枝により異なる。全緑の枝に咲いた花から自家受精で採種すれば次代は全部全緑株、全白の枝からの次代は全白の苗しか生じない。また、斑入りの枝に咲いた花を自家受精すると、次代には斑入り株、全緑株、全白株が生ずる。また、斑入り雌×全緑雄のF1もこれと同様斑入り株、全緑株、全白株を生ずるが、その逆交雑では全緑のみである。
この現象は、斑入りが細胞質内に存在する葉緑体上の突然変異遺伝子に原因するとすれば、よく説明される。この例では、葉緑体は卵細胞からは伝わるが、花粉からは伝わらない。しかし、テンジクアオイの斑入りの場合は花粉からも葉緑体が持ち込まれるという。
[田島弥太郎]
『田中義磨著『基礎遺伝学』訂正35版(1982・裳華房)』▽『小野記彦編『現代生物学大系13 細胞・遺伝』(1966・中山書店)』▽『関口睦夫著『核酸と遺伝』(1980・培風館)』
出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例
いでん
遺伝
heredity,inheritance(英),Vererbung(独)
人間の行動や能力,性格のような心理学的形質の形成と発達において,遺伝と環境の両要因のかかわりを理解することは重要である。生命活動を生み出す遺伝子は,40億年前に二重らせんの分子構造をもち自己複製することのできるDNA(デオキシリボ核酸)として誕生し,さまざまな時間単位で変化する環境に適応することのできる具体的形質として発現する多様な表現型,または顕型phenotypeとなり,今日に至る進化の過程を経て膨大な生物多様性を生み出している。遺伝情報は生物の表現型の形態的特徴だけでなく行動的特徴の形成も担っており,ヒトの心理的形質もその一つの様態である。
【遺伝のしくみ】 細胞核の中にあるDNAに刻まれた遺伝情報は,mRNA(伝令リボ核酸)に転写されタンパク質を合成することにより発現する。このメカニズムが知られていなかった時代には,生殖細胞の中に,生まれてくる子どもの構造があらかじめ存在するとする前成説preformationが信じられていたが,生物の発生過程が明らかになった18世紀には否定され,生物はその過程で徐々に作られていくという後成説epigenesisが優勢となった。親世代から子世代に形質が伝達(遺伝)するしくみを解明したメンデルMendel,G.J.は,ある表現型の背後に,両親から一つずつ受け継いだ遺伝子が対として組み合わさった遺伝型,または元型genotypeがあり,その対立遺伝子同士には一方が他方に対して優勢に働くという「優性の法則」,対立遺伝子が親から子に受け継がれるとき二つに分かれてその一方のみが伝わり,子世代で新たな組み合わせに分離するという「分離の法則」,異なる形質をつかさどる遺伝子はそれぞれ独立に遺伝するという「独立の法則」を発見した。単一遺伝子について見いだされたこのメンデルの法則Mendel's lawは,心理的形質のような多遺伝子polygene(ポリジーン)の場合にも当てはまり,その結果一組の両親からも多様な遺伝子型をもった子どもが生まれ,血縁者間では遺伝による類似性とともに遺伝による差異をも生み出す。
20世紀に入り遺伝子が細胞核の中で染色体という形に折りたたまれたDNAによって伝達されることが突き止められ,ワトソンWatson,J.D.とクリックCrick,F.H.C.によって4種類の塩基の二重らせん状の配列からなる分子構造が特定された。かくして分子生物学により遺伝情報が後生的に発現する過程が分子レベルで解明されるようになると,それは自動機械のように決定論的なものではなく,発生・発達過程で受けるさまざまな環境の影響に適応すべく複雑な調整機能が働くことが知られるようになった。とくにRNAへの転写がDNAへの後生的化学的変性,すなわちエピジェネティクスepigeneticsによって調整されるメカニズムは,遺伝と環境のダイナミックな相互作用過程を解き明かす鍵として注目される。
ヒトの遺伝情報は,23対46本の染色体chromosome上に乗る30億の塩基対に埋め込まれた2万個余りの遺伝子によって担われている。ヒトとチンパンジーの塩基配列の差異はわずか1.23%,異なるヒト同士の塩基配列の差異に至っては0.1%にすぎない。すなわち圧倒的な遺伝的普遍性が同種内のみならず異種間にも存在する。同時に,同じヒト同士の間にある0.1%の塩基の差異も,30億に対しては300万に相当し,その一つが異なっても異なるタンパク質をコードする遺伝子となる可能性がある。この遺伝子多型genetic polymorphismの存在が生物の個体差の源泉である。このようにDNAの分子構造には生物の普遍性と個別性の両側面が埋め込まれているのである。
【行動遺伝学behavioral genetics】 心理的・行動的形質の形成に及ぼす遺伝と環境の関係を,とくに個人差の側面について解明しようとするのが行動遺伝学である。その基本的なモデルは表現型(P)を遺伝子型(G)と環境(E)のそれぞれの効果の和として考え(P=G+E),それぞれの変異を表わす表現型分散(VP)も遺伝分散(VG)と環境分散(VE)に分解される(VP=VG+VE)。特定の心理的形質に関するVGとVEの推定は,双生児法twin methodなどを用いて具体的に行なうことができる。図1のパス図が示すように,遺伝子をすべて共有する一卵性双生児きょうだいの表現型の共分散は,きょうだいの遺伝要因(A,その分散はa2)間の相関1.0,ならびにきょうだいが共有するその類似性に寄与する共有環境shared environment(C,分散はc2)間の相関1.0からなる。一方,二卵性双生児は共有される遺伝子が約50%にすぎないため遺伝相関は0.5であるが,共有環境相関は一卵性と等しく1.0である。それぞれの表現型分散には,双生児きょうだいが共有せず,それぞれの独自性(非類似性)に寄与する非共有環境nonshared environment(E,分散はe2)からなる。このモデルに構造方程式モデリングを適用してさまざまな心理学的形質の遺伝と環境の寄与を求めると図2のようになり,おおむねあらゆる形質に遺伝要因が関与する一方で,共有環境(家庭環境)の効果は個人差にあまり大きく寄与していないことがわかる。
遺伝要因と環境要因の間にこのような相互に独立な相加性を仮定する考え方は,両要因間の複雑でダイナミックな相互作用を強調する相互作用説interactionismに対し,両要因の単純な加算効果を仮定する古典的な輻輳説convergence theoryとみなされるかもしれない。しかしこのモデルはさらに両要因間の交互作用を考慮したモデルに展開(P=G+E+G×E)することが可能であり,遺伝と環境の多様な交互作用の検出を可能にしている。
【分子遺伝学的アプローチ】 1996年に新奇性追求とドーパミン受容体遺伝子DRD4,不安とセロトニン伝導体遺伝子5-HTTLPRとの間の関連が示唆されてから,分子遺伝学的手法を用いた心理的・行動的形質の関連遺伝子の特定が活発になった。単一遺伝子の寄与率は必ずしも大きくなく,研究結果の再現性も安定していないため,遺伝子診断による予測的介入が可能なほどではない。しかし攻撃性に及ぼす虐待経験の有無と影響がモノアミンオキシダーゼA遺伝子MAOAと交互作用する(MAOAの活性が低い型をもつヒトが深刻な虐待を受けた場合に攻撃性が高まりやすい)という報告にあるように,遺伝と環境の交互作用の具体的解明が期待される。
〔安藤 寿康〕
出典 最新 心理学事典最新 心理学事典について 情報
遺伝
いでん
heredity
一般にはなんらかの特性が親からその子孫に継承される生物学的過程をいう。性的な再生産を行う生物の場合,子孫は親の正確な複製ではなく,通常,数多くの側面でさまざまに異なる。遺伝と変異は同じコインの裏表で,遺伝学の対象である。遺伝学は,遺伝子が作用し,親から子孫に伝えられるあり方を研究する。近代の遺伝学は,遺伝子の行動メカニズム,すなわち,遺伝物質が細胞内の生理学的反応にどう影響しているのかも研究対象にしている。多くの言語で,生物学的な形質の「遺伝」と財産の「相続」の両方に同じ単語をあてている。しかし,生物学的な遺伝と法的な相続はまったく異なる過程である。相続の対象となる財貨は,実際にある所有者から次の所有者にそっくり渡される。これに対し,子孫が親から受継ぐのは遺伝子の構成である。この継承された遺伝子,すなわち個人が両親から受継いだ遺伝子の総和は,遺伝子型と呼ばれる。これと対照的なのが,体の構造や生理学的な過程,行動など,有機体の外的な様相である表現型である。遺伝子型によって,ある生物が発現していく形質のおおまかな限界は決るが,実際に発現する形質,すなわち表現型は,遺伝子とそれを取巻く環境との複雑な相互作用に依存している。個体を取巻く内的および外的な環境は常に変動しているため,表現型も変化し続けている。そのため,同一の個体でも幼年期,成年期,老年期には別々の表現型を呈する。一方,遺伝子型は個体の生涯にわたって変らない。遺伝子研究では,観察可能な特性 (表現型) がどの程度細胞内の遺伝子のパターン (遺伝子型) によるものなのか,どの程度まで環境の影響で立現れたものなのかを解明することが非常に重要である。
遺伝の本質は,遺伝情報の運び手である遺伝子を再生産することである。それによって人間を初めとする生物学的有機体は,自分自身に似た有機体を再生産する。人間の子供は常に明らかに人間であって,親の表現型に似た表現型を有する。一方,性的な再生産を行う生命体の子孫は,両方の親からさまざまな組合せの遺伝物質を受取っているため,2体の子供が (一卵性双生児は別にして) まったく同一の遺伝子型を有することはない。こうした遺伝的多様性は,同じくらいさまざまな環境によって常に修正されるため,結果として生ずる表現型がまったく同一であることは,たとえそっくりな双子の間でさえあり得ない。遺伝学は,しばしば生物学のかなめの科学と呼ばれるが,必ずしも生物学の分野で最も根本的であるというわけではなく,それがほぼすべての生命研究に影響を与えていることを示唆しているにすぎない。人類学や医学,生化学,生理学,心理学,生態学,組織学,比較形態学,古生物学など,いずれも遺伝子学との共通部分がある。これほど多数の基礎的あるいは理論的な科学と同様に,遺伝学にも数多くの実際的および潜在的な応用分野がある。遺伝的障害の解明や予防と改良された作物や家畜の育成は,そうした応用の一例にすぎない。遺伝に関する知識は有史以前にさかのぼり,何世紀にもわたって植物や動物の育成に応用されてきた。しかし遺伝機構の大半は,20世紀になるまで謎のまま残されていた。遺伝子の作用の解明について開拓者的な業績が得られたのはさらに新しく,遺伝学という科学はまだ幼年期にある。
出典 ブリタニカ国際大百科事典 小項目事典ブリタニカ国際大百科事典 小項目事典について 情報
遺伝
いでん
Inheritance
(生活習慣病の基礎知識)
生活習慣病のひとつに、高コレステロール血症という病気があります。そのなかでも、とりわけコレステロール値が高い家族性高コレステロール血症は、単一遺伝子疾患のひとつです。
これは、単一の遺伝子に生じた突然変異が主な原因となる疾患で、メンデルの法則によって遺伝します。単一遺伝子疾患は、種類は多いものの頻度はあまりありません。
一方、メンデルの遺伝法則はみられないものの、何らかの遺伝要因が関与する多因子疾患の存在が明らかになってきました。高血圧や糖尿病、がんなどの生活習慣病も、発症には複数の遺伝要因とさまざまな環境要因が関与します。
単一遺伝子疾患は、異常遺伝子をもつことが発症の必須条件であることから原因遺伝子と呼ばれ、多因子疾患の発症関連遺伝子は発症の危険因子のひとつにすぎないことから、感受性遺伝子と呼ばれています。
以上のように、生活習慣病は遺伝子、環境要因、生活習慣が関与し、その寄与率も疾患によってさまざまです。しかも相加的あるいは相乗的効果を及ぼしあう可能性があります。
同じ食事、運動をしていても、人によって肥満になる人とそうでない人がいるのはなぜでしょうか。この個人差は遺伝子によるものです。遺伝子の影響がより強い一卵性双生児では、二卵性双生児と比較して、肥満度、脂質、血糖値、血圧の発生頻度が高いことが明らかにされています。
また、双生児ではない普通の人の高血圧を例にとると、両親ともに高血圧の場合は50~60%、どちらか一方の場合は約30%、両親ともに正常の場合は約20%の確率で高血圧が発症します。このように、高血圧の発症については50~60%は遺伝、40~50%は環境が要因であるとされ、遺伝的な要因のほうがやや確率が高いのです。
つまり生活習慣病といえども、遺伝の影響が強いことが明らかにされたわけです。しかしこの一卵性双生児においても、食事療法を行うことで肥満が改善されることも証明されています。家族歴、つまり両親がどのような病気にかかったことがあるかを知ることで、事前にその病気にかかりやすいかどうかがわかります。
和田 高士
出典 法研「六訂版 家庭医学大全科」六訂版 家庭医学大全科について 情報
遺伝【いでん】
子が親に似ること,つまり親の形質が子孫に伝えられることだが,現代の生物学では遺伝子の伝授の現象をいう。1865年メンデルによって形質の伝わり方に法則性があり,形質に対応した遺伝子の存在を仮定すれば遺伝の現象を解析できることが示され(メンデルの法則),1926年T.モーガンにより,遺伝子が染色体上に線状に配列することが組換えの実験で証明された。現在では,遺伝子の実体は細胞内のDNAであり,DNAは細胞内で生産されるタンパク質の構造を規定して形質発現に関与するとされる。DNAはもっぱら染色体に含まれるが,色素体やミトコンドリア,その他の細胞質内の構造にも含まれ,やはり形質発現に関係して細胞質遺伝を起こす。また性染色体内の遺伝子で支配される形質は伴性遺伝する。
出典 株式会社平凡社百科事典マイペディアについて 情報
デジタル大辞泉
「遺伝」の意味・読み・例文・類語
い‐でん〔ヰ‐〕【遺伝】
[名](スル)
1 生物の形質が遺伝子によって、親から子へ、あるいは細胞から次の世代の細胞へ伝達されること。遺伝子の本体であり生命現象の基本物質であるDNA(デオキシリボ核酸)が複製され、それを写す形で伝令RNA(リボ核酸)が合成され、その指令に基づいてたんぱく質が合成されることで伝えられる。
2 後代に残り伝わること。また、残し伝えること。
「―の財産を譲り受けるは」〈逍遥・内地雑居未来之夢〉
出典 小学館デジタル大辞泉について 情報 | 凡例
い‐でん ヰ‥【遺伝】
〘名〙
① 後までのこり伝わること。また、後世までのこし伝えること。
※輿地誌略(1826)二「翁加里亜の一王国を建、其名を今に遺伝するなり」 〔史記‐大倉公伝〕
② (heredity の
訳語) 生物の生殖によって親の形質が子孫に伝わる現象。生殖細胞に含まれる遺伝子によって伝えられる。
※七新薬(1862)七「其因由を熟察するに、半ば遺伝に係り、半ば風土に由る」
出典 精選版 日本国語大辞典精選版 日本国語大辞典について 情報
遺伝
遺伝子が親から子へ伝わること.すなわち生物の機能が次世代に伝わること.
出典 朝倉書店栄養・生化学辞典について 情報
いでん【遺伝 inheritance】
ネコから産まれる子はすべてネコで,決してイヌやネズミにはならない。同じように,ウリの種子からはウリしか生えず,スイカやトマトが育つことはない。このように,親(または先祖)の性質が子ども(または子孫)に伝わることをふつう遺伝という。しかし,もっと身近に親子の関係を眺めると,親の性質がそのまま子どもに伝わるとは限らない。一つ一つの性質(形質という)をとっても,子どもが親にそっくり似ることはむしろまれである。
出典 株式会社平凡社世界大百科事典 第2版について 情報
普及版 字通
「遺伝」の読み・字形・画数・意味
出典 平凡社「普及版 字通」普及版 字通について 情報
世界大百科事典内の遺伝の言及
【血液型】より
…現在,血液型は広義,狭義二つの使われ方をしている。すなわち狭義には,(1)ヒトその他の赤血球抗原の多型(一生物集団内に多数の遺伝的な型が共存する現象)についていう。つまり赤血球膜に存在するある種の抗原の構造のちがい(特異性)によって決められる遺伝的な個体差(型)で,それが同一集団内でかなりの頻度で認められるようなものをさす。…
【人類遺伝学】より
…人類における遺伝現象を研究する医学,生物学の一分野で,ヒトの生命現象とその変異を遺伝子や染色体との関連のもとに研究する学問である。 ヒトの遺伝子の大部分は細胞の核の染色体に存在し,両親はそれぞれ自己の遺伝子の半分を,精子と卵子(配偶子)の染色体を通して子に伝達する。…
※「遺伝」について言及している用語解説の一部を掲載しています。
出典|株式会社平凡社世界大百科事典 第2版について | 情報