日本大百科全書(ニッポニカ) 「解析的整数論」の意味・わかりやすい解説
解析的整数論
かいせきてきせいすうろん
微分積分学をはじめとする解析的方法を整数論に適用する学問をいう。その創始はドイツの数学者ディリクレによる。たとえば、すべての素数の逆数の和を考えてみる。
ここにpはすべての素数を動く変数である。実はこの級数は発散する。かりに素数が有限個しかないとすれば、その逆数和は有限の値となるのだから、この級数の発散は素数が無限に存在することを意味する。11と13、17と19のように差が2の素数の組を双子素数(ふたごそすう)という。qでもって双子素数を動く変数を表すことにすると、級数
は収束する。これが発散すれば双子素数は無数にあることが結論されるが、それはいえない。ただ、ある意味で双子素数はかなり数が少ないことがいえる。
このように級数が整数論に応用されて多大な成果をもたらす。なかでもディリクレの算術級数定理は有名で、また重要でもある。aを初項、dを公差とする等差級数(算術級数)を考える。
an=a+(n-1)d
aとdとが互いに素であれば、anの形をした素数の逆数の和はつねに発散する。すなわちanのなかには無数に素数が存在する。これをディリクレの算術級数定理という。たとえばdを10としaを1とすると、11、31、41、61、……のように1桁(けた)目が1である素数が無数に存在する。
[足立恒雄]
素数定理
関数論の応用例としてもっとも典型的であり、しかも解析的整数論においてもっとも基本的なのが、素数定理である。正の数xを超えない素数の個数をπ(x)と表すことにする。たとえば
π(10)=4, π(100)=25, π(107)=164579
である。素数の分布に関するもっとも荒っぽいのはπ(2x)-π(x)≧1がx≧2のとき成り立つことを主張する定理であろう。すなわち、xと2xの間にかならず素数が存在する。この程度の定理でも証明はそうやさしくはない。ガウスは15歳のころ、xが大きくなると
すなわち、
であることを知ったと述べている。
だから、素数定理は
とも述べられる。証明は1896年に至ってアダマールとド・ラ・バレ・プサンCh. de la Vallée-Poussinによって与えられた。そのほか、リーマンのゼータ関数など、解析的整数論固有の問題があって、現在も研究されている。
[足立恒雄]