日本大百科全書(ニッポニカ) 「電解質」の意味・わかりやすい解説
電解質
でんかいしつ
electrolyte
水などの極性溶媒に溶かしたとき、イオンに解離して(これを電離という)、その溶液が高い電気伝導性をもつようになる物質を電解質という。
電解質溶液electrolytic solutionに電極を入れ、適当な電圧のもとで電流を通じると、電解質の成分イオンが電荷を失って両極に析出する現象を電気分解あるいは電解というが、電解質の名はこの現象に由来している。
[下沢 隆]
電離説
電解質溶液にイオンが存在していることは、イギリスのファラデーやドイツのコールラウシュらによって古くから指摘されていた。酸や塩基の水溶液についての中和熱や電気伝導度の測定値を説明するために、スウェーデンのアレニウスは、これらの水溶液中で未解離の溶質分子と、電離によって生じたイオンとの間に電離平衡が成立すると考えた。これが「電解質溶液は、電場をかけなくてもつねに一定の電離度で自由なイオンに電離している」という電離説で1887年に提出された。アレニウスの説あるいはイオン説ともいう。この考えによれば、電気分解の現象も、また電解質溶液における浸透圧、沸点上昇、凝固点降下などがモル濃度から期待される値より大きく現れることも説明される。電離説の欠陥は、イオンは互いに無関係に溶液中にあるとし、イオン間の静電相互作用を無視したことである。さらに、この理論は、ドイツのF・W・オストワルトやネルンストらによって定量的な形に展開された。
[下沢 隆]
電離のおこる原因
塩化ナトリウムNaClのような電解質塩類は、固体および溶融状態においても、その構成原子がイオンとして存在している。この種の電解質が極性溶媒中でイオンに解離しているのは、主としてイオン間の静電引力が溶媒の高い誘電率によって弱められることに起因している。これに対して、塩化水素HClのような分子は、普通の条件のもとでは共有結合の状態にあり、イオン結合性は小さいが、極性溶媒には溶けて、イオンを生成する。
HCl+H2O―→H3O++Cl-
この場合の電離は、生成したイオンの溶媒和(溶媒が水の場合は水和という)による安定化のエネルギーが大きいことに起因している。この種の電解質をとくに第2種の電解質ということもある。一般に、大きな溶媒和エネルギーを与え、かつ大きな誘電率をもつような溶媒では、電解質の電離は容易になる。極性溶媒の代表例は水であるが、ほかに液体アンモニア、過酸化水素、フッ化水素などがある。
[下沢 隆]
強電解質と弱電解質
電解質は、その構成イオンの種類や性質によって、さまざまに分類される。i価の正イオンm個とj価の負イオンn個からなる中性分子が次の電離を行うとする。
AmBnmAi++nBj-
全体として電荷は中和しているのでmi=njであり、正・負イオンの存在比はイオン価に反比例する。このような電解質をi‐j価の電解質という。たとえば、塩化ナトリウムは1‐1価の電解質、硫酸ナトリウムNa2SO4は1‐2価、硫酸カルシウムCaSO4は2‐2価の電解質などとよぶ。また、電離した正・負イオンの数を考慮して、たとえばNaClは電離して正・負イオンを各1個生ずるので、一価二元電解質、Na2SO4を二価三元電解質などとよぶこともある。一般に電解質は溶液中で完全には電離していないので、電離の程度を電離度αを用いて示し、αの大きいものを強電解質strong electrolyte、小さいものを弱電解質weak electrolyteと分類することがある。
電解質塩類は一般に強電解質で、酸や塩基は強酸、強塩基から弱酸、弱塩基にわたってさまざまな電離度を示す。
[下沢 隆]
電離度
電解質総数に対する電離したイオンの数との比を電離度αという。αは0から1までの数字で、強電解質は1に近く、弱電解質は0に近い。またαは、濃度や温度によっても変化する。すなわち、濃度が低くなるほど、温度が上昇するほどαの値は大きくなる。
弱電解質でも、濃度が十分希薄になるとαは1に近づく。実験的にαはファント・ホッフ係数iの測定や電気伝導度の測定から求められる。たとえば、蒸気圧降下、沸点上昇、浸透圧などの測定からiを求め、次式によってαを求める。
α=(i-1)/(m+n-1)
ここでm、nはそれぞれ正・負のイオン価である。後者は比伝導度Λから求めた当量伝導度Λv(Λに1グラム当量の電解質を含む溶液の体積を掛けたもの)を種々の濃度で測定し、これを無限希釈した値Λ∞と比較する。αはΛv/Λ∞で与えられる。
[下沢 隆]
電離度と濃度の関係
電解質溶液を希釈していくと、電離度がしだいに大きくなる。電離しない電解質分子と電離したイオンとの間に電離平衡が成立し、質量作用の法則が適用される。この希釈度(濃度)と電離度の関係を表した法則がオストワルトの希釈律(単に希釈律ともいう)である。電離平衡の電離定数KはK=α2c/(1-α)で与えられるが、希釈度v(モル濃度cの逆数)を用いると、オストワルトの希釈率Kvが得られる。
Kv=α2/(1-α)
弱電解質溶液はこの式によく従うが、強電解質溶液では修正が必要である。
[下沢 隆]
強電解質の異常
強電解質の溶液や、高濃度の電解質溶液の場合、濃度cを用いた型の質量作用の法則の適用ができなくなり(これを強電解質の異常という)、Kcが濃度変化に対し定数でなくなる。このため濃度cのかわりに、有効濃度を導入する。いま、aを活動度、fを活量係数として、a=fcとする。cのかわりにこのaを用いると、電離定数が濃度に対して一定となり、質量作用の法則が保たれる。この考えは、アメリカのG・N・ルイスによって提唱された(1908)。
一方、オランダのデバイとドイツのヒュッケルは、まったく別の観点から強電解質溶液の性質を説明した。すなわち、強電解質溶液が希薄溶液では完全に電離していると仮定し、測定値の理論値からのずれは電離により生じたイオン間の静電相互作用によるものと考えた。すなわち、溶媒を均一な誘電体と考え、ある1個のイオンに着目し、その周辺の電荷分布を求める。つぎに、これにより生ずる静電ポテンシャルがマクスウェル‐ボルツマンの分布をしているとして、強電解質溶液内の浸透圧係数gを定義する。gはK、α、cなどと次の関係がある。
しかし、この理論も、イオンが水和している場合には理論値と実測値との一致が悪くなる。
[下沢 隆]
『日本化学会編『電解質の溶液化学』(1984・学会出版センター)』▽『大滝仁志著『イオンの水和』(1990・共立出版)』▽『玉虫伶太・高橋勝緒著『エッセンシャル電気化学』(2000・東京化学同人)』