日本大百科全書(ニッポニカ) 「運動方程式」の意味・わかりやすい解説
運動方程式
うんどうほうていしき
equation of motion
物理における物体の運動を理解するための方程式。歴史的にはニュートンの運動の第二法則により、最初のニュートンの運動方程式がF=maという形で提案された。ここでFは力、mは質量、aは加速度である。その後、流体力学に対するオイラー方程式、ナビエ‐ストークス方程式も提案される。しかし、重力のような中心力を扱う場合に便利な極座標系で運動方程式を扱うと、方程式が複雑になる。そこで座標系に依存しない形での運動方程式を研究した結果、解析力学としてラグランジュの運動方程式、ハミルトンの正準運動方程式に発展した。量子力学の発展期には、ハミルトン形式の運動方程式からハイゼンベルクの運動方程式が開発された。
[山本将史 2021年7月16日]
[参照項目] |
| | | | | | |