日本大百科全書(ニッポニカ) 「空間」の意味・わかりやすい解説
空間
くうかん
space 英語
Raum ドイツ語
espace フランス語
物が存在しうる場所の全体をいう。
哲学における空間
空間をめぐる哲学的考察は、哲学の歴史とともに古い。真空の存在、空間と物体との関係、空間的位置の絶対性と関係性、空間そのものの実在性、幾何学と物理的空間との関係など、多くのさまざまな問題が論じられてきた。
古代ギリシアのデモクリトスは、存在としての無数の原子が空虚な空間の中で運動する、という考えに基づいて、この世界の現象を説明しようとした。しかし、空虚な空間(真空)とは、「存在」に対する「虚無」であり、そのような虚無が「ある」とはいかなることか、という問題を生ずる。そして実際、多くの哲学者たち(たとえばアリストテレス、デカルト)が、真空の存在を否定した。存在しないものが、或(あ)る性質をもつ、ということはありえず、したがって、「広がっている」という性質をもつものも、なにか存在するものでなければならない。そこでデカルトは、「広がっている」ものは実体としての物体である、と考えるわけである。デカルトにとっては、物体がすなわち延長であった。
空間的「位置」をめぐっても、物体と空間との関係が問題になる。「宇宙の中心」を考えるアリストテレスや、「絶対空間」を唱えるニュートンにとっては、どの物体がその位置にあるか(あるいはないか)ということとは独立に、その位置について語ることに意味があるのである。しかしライプニッツは、空間(および時間)を相対的、関係的に考え、絶対的な位置について語ることには意味がない、と主張した。この考えは、空間・時間の「観念性」の考えにつながる。
カントは、空間とはそれ自体でわれわれの外に存在するものではなく、われわれが外界を認識する際の、主観の側の条件としての「直観の形式」である、と考えた。ただしこれは、物理学者が主張する空間の実在性と、ただちに対立するわけではない。なぜなら、カントにとって、物理学者が扱う世界は、表象としての「現象」の世界にほかならないからである。
カントは、空間の先天的形式性に基づいて、ユークリッド幾何学の必然性を説明しようとしたが、非ユークリッド幾何学や相対性理論の出現に伴って、幾何学と現実の空間との関係が、改めて重大な問題になってきた。ポアンカレは、幾何学の公理とは、現実の空間のもつ性質を記述するものではなく、「規約」あるいは「擬装した定義」である、という見解を述べている。
[丹治信春]
物理学における空間
物理学において空間とは、広がりをもった連続体であり、物質全体に同時にその存在の場所を与えている実在であると考えられている。時間・空間と物質とは互いに独立したものでなく、密接不可分なものであることが、物理学の発展に伴いしだいに明らかになってきた。
空間の点の位置は、その縦・横・高さの三つの座標を用いて定めることができる。このことを空間が三次元であるという。時間の次元をあわせると、時空の次元は四次元となる。宇宙の誕生とその発展過程の研究の進展に伴い、さまざまな形式の宇宙の存在の可能性が指摘されている。またこの可能性は素粒子の基本構造の研究からも論ぜられている。現在の物理学では、時空と物質とを互いに密接な関係をもつ独立な実在のようにみなしており、物質の運動が研究の対象であるのと同じように、空間の広がり方、その構造もまた研究の対象とされている。
[田中 一]
空間の属性と保存性
空間はどの点をとっても、また各点からみたどの方向に対しても同質である。これをそれぞれ空間の一様性および等方向性という。力学系の保存量は、以下に示すように、力学系の変換性と密接な関係をもっているが、このような関係は、空間の一様性と等方向性に基づいている。
一定の運動量(あるいは質量×速度)をもつ力学系(対象とよぶことにする)を、その運動量の方向にずらした座標系からみても、力学系の運動量の方向や大きさは変わらない。逆にいえば、座標系のずらし、すなわち変位に対して不変な物理量が運動量という物理量であるといってよい。このようにして、力学系が座標系の変位に不変であれば、その力学系は一定の運動量をもつことがわかる。すなわち運動量を保存量とすることがわかる。このように、座標系の変換に対する力学系の不変性と力学系が保存量をもつこととは表裏一体の関係にある。空間回転に不変な力学系は角運動量を保存量とする。
座標系として直交座標系、すなわち縦・横・高さのx、y、z軸からなる座標系Pと、
のようにこのうちいずれか一つ、たとえばz軸をその反対方向に向けた座標系Qとを比較してみよう。同じ三角形abcを座標系Qからみたとき三角形abcの各頂点のz座標はいずれも負であって、座標系Pからみたときこれらと同じ座標をもつ三角形を座標系Pに書き込んだのが三角形a'b'c'である。二つの三角形abcとa'b'c'とは互いに鏡に映した像になっている。二つの座標系PとQとの一方から他方への変換を空間の反転という。空間反転によって力学系の座標は鏡像に映る。空間反転した二つの座標系からみても物理学の基本法則は多くの場合同一であるが、素粒子の崩壊現象では多くの場合空間反転による不変性が成り立たない。
は、コバルト60という原子核とこの原子核の回転の向きを示す。この原子核内の中性子は電子を放射して陽子に変わる。この場合 の左側に電子を放射する割合は右側の割合より大きい。空間反転によっては回転の向きが変わらないので、中性子が陽子に変わる法則が空間反転に対して不変であれば左右の電子放射の割合は等しいはずであるが、測定結果はそのようになっていない。[田中 一]
空間と物質
相対性理論では、等速度運動を行うどの座標系からみても、光の速さは一定の値をもつ。この光速不変が基準となって時間の進み方や空間の広がり方が定まる。物体の広がりは物体の異なる部分の同時刻の位置を測ることによって求めることができる。同時刻であるか否かも光速不変を基準として定まるので、一つの座標系からみて同時刻である時空の2点も、この座標系に対して一定速度で移動する座標系からみたときには同時刻ではない。一般に任意の時空の点Aから他の時空の点Bに光を放射したとき、ちょうど時空の点Bに届くこともあるが、そうでない一般の場合、2点の時空上の位置は、適当な慣性系からみたとき2点A、Bが同時になる場合と、空間上の同位置になる場合とがある。前者を空間的、後者を時間的という。これらは同時刻異位置、同位置異時刻の一般化で、
がこれを示す。このように時空関係の基本が光の速さによって定まることは時空と物質との関係の密接さを示す。われわれが日常経験している空間はユークリッド空間であって、物質密度がゼロで光の速度が無限大のときの空間である。光の速さが有限であることを考慮したとき、われわれの空間はミンコフスキー空間であることをみいだしたのが相対性理論であり、物質密度がゼロではなく時空構造にもつ関係を考慮したとき、一般相対論はわれわれの時空がリーマン空間であることを示した。このように物理学では、時空の構造を認識対象としながら、しだいに研究されてきている。
物質の運動が量子的であることが20世紀に入ってみいだされてきたが、その結果もっともエネルギーの低い状態にある力学系すなわち真空もエネルギーの有限な系と同列に扱われるようになってきた。
真空とは物質のない空間であり、物質の存在する現実の空間から物質を排除することによって得られた物理的対象であったが、量子的研究は、真空を最低エネルギー状態と規定することによって、この現実の空間を物質的実在とみなすことを求めている。このように、量子力学の発展とともに、物質と空間との不可分な関係はいっそう深く認識されるようになってきた。素粒子の基本構造もまたこの観点から研究されており、湯川秀樹の晩年の非局所場理論および最近の超弦理論などの統一場理論はこのような研究の方向を示唆したものといえよう。
そのほか、物理学の理論が数学的に構成された空間を用いて定式化されていることが多い。多自由度の系のための位相空間や量子力学に対するヒルベルト空間などがそれである。
[田中 一]
数学における空間
集合に幾何学的な構造を与えたものを空間という。集合や構造の与え方によって、さまざまな空間が得られる。
われわれの住む直観的空間Eも、空間内の点Oと、Oで互いに直交する三つの直線を定め、それらの直線を、Oを原点とする数直線と考えて、三つの数直線のおのおのの座標x、y、zで定まる点(x,y,z)の全体をEと同一視すれば、前述した数学的空間と考えられる。すなわち、これは三つの実数の組(x,y,z)の全体R3を考え、集合R3の任意の2点
p=(x1,y1,z1),q=(x2,y2,z2)
の間の距離を
と定義した空間である。
R3にこの距離dを与えた空間は、三次元ユークリッド空間とよばれる。この概念を拡張すると、n次元ユークリッド空間が得られる。この場合、直観的空間Eにおける平面や直線は、それぞれ二次元ユークリッド空間、一次元ユークリッド空間に対応する。ユークリッド空間以外の空間も数多く知られている。
[廣瀬 健]
『『ライプニッツとクラークとの論争文』(ライプニッツ著、園田義道訳『ライプニッツ論文集』所収・1976・日清堂書店)』▽『E・マッハ著、野家啓一編・訳『時間と空間』(1977・法政大学出版局)』▽『アレクサンドル・コイレ著、横山雅彦訳『閉じた世界から無限宇宙へ』(1987・みすず書房)』▽『エル・ヤ・シュテインマン著、水戸巌訳『空間と時間の物理学』新装版(1989・東京図書)』▽『町田茂著『時間・空間の誕生』(1990・大月書店)』▽『ジョン・アーチボルト・ウィーラー著、戎崎俊一訳『時間・空間・重力――相体論的世界への旅』(1993・東京化学同人)』▽『丹野修吉著『空間図形の幾何学』(1994・培風館)』▽『小山慶太著『物理学の広場――時間の話・空間の話』新装版(1996・丸善)』▽『アンリ・ルフェーヴル著、斎藤日出治訳『空間の生産』(2000・青木書店)』▽『イアン・ヒンクフス著、村上陽一郎・熊倉功二訳『時間と空間の哲学』復刊版(2002・紀伊國屋書店)』▽『デカルト著、桂寿一訳『哲学原理』(岩波文庫)』▽『H・ポアンカレ著、河野伊三郎訳『科学と仮説』(岩波文庫)』