写像
しゃぞう
mapping
風景と、レンズを通して得られるその像のように、ある対象の点を他の対象の点に写す、または対応させる仕方を写像というが、その考え方はもっと一般化されて、集合、位相空間、群とか体(たい)のような数学的対象においても用いられる。
fが対象AからBへの写像(同様の意味で対応、関数とか射(しゃ)という語が用いられることがある)とは、Aの任意の元xに対して、fによって、Bのただ一つの元が定まるときで、このyのことをxのfによる像といい、x→f(x)とかy=f(x)のように記す。またfがAからBへの写像であることをf:A→BとかA
Bのように記す。とくにAの相異なる元に対応するBの元が相異なるときfは一意写像または単射とよばれる。そしてBの任意の元がAの元の像となっているときfは全射とよばれる。特別な場合としてAの元xにそれ自身を対応させる写像1Aは恒等写像とよばれている。恒等写像は全射であると同時に単射でもある。このような写像は全単射とよばれる。
AからBへの写像fが全単射であるとき、Bの任意の元yに対してy=f(x)となるAの元xがただ一つ定まる。yにこのxを対応させる写像をf-1と記して、fの逆写像とよぶ。もちろんAのすべての元についてf-1(f(x))=xであり、Bのすべての元についてf(f-1(y))=yである。
AからBへの写像fについてf(x)が定まっているxの全体、この場合はAをfの定義域、そしてxが定義域を動くときのf(x)の全体の集合をfの値域とよぶ。したがって値域がBに一致する写像が全射である。たとえば、実数から実数への写像として、xにその平方x2を対応させる写像では、定義域は実数の全体、値域はゼロまたは正の実数の全体である。
何個かの写像については合成写像という概念がたいせつである。たとえばfはAからBへの、gはBからCへの写像であるとき、Aの元xに対してfによってBの元f(x)が定まり、さらにgによってCの元g(f(x))が定まる。このようにしてAの元xに対してCの元g(f(x))が定まる。この写像をfとgの合成写像といいg゜fと記する。
さてAからBへの二つの写像fとf′についてAのすべての元xについてf(x)とf′(x)が等しいときfとf′は写像として等しいといい、f=f′と記す。このようにすれば恒等写像についてはf・1A=1B・f=fであり、fが全単射のときは逆写像f-1についてf゜f-1=1Bおよびf-1゜f=1Aが成立する。さらにhをCからDへの写像とすればh゜gはBからDへの写像であるが、二つの異なる仕方でのAからDへの合成写像、つまりh゜(g゜f)と(h゜g)゜fについては、Aの任意の元xに対して両方ともDの元h(g(f(x)))を対応させる写像としてh゜(g゜f)=(h゜g)゜fという結合法則(結合律)が成立する。この点は写像の合成の重要な点である。しかしながらf゜gが定義されていてもg゜fが定義されるとは限らず、両方とも定義されている場合でも一般には等しいとは限らない。つまり一般には交換法則(交換律)は成立しない。
[難波完爾]
出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例
写像【しゃぞう】
関数の概念を拡張したもの。集合Xの任意の要素xに対し集合Yの一つの要素yが定まるとき,xにyを対応させる規則fを写像といい,y=f(x)と書く。集合Xをfの定義域,f(x)の集合をfの値域またはfによるXの像といいf(X)と書く。f(X)がYに一致するとき,fをXからYの上への写像という。fがXからYの上への写像で,かつx1≠x2ならf(x1)≠f(x2)であれば,fをXとYの間の1対1対応という。このときyに対しf(x)=yとなるxを対応させる写像をfの逆写像といいf(-/)1で表す(逆関数)。f(-/)1の定義域,値域はfのそれと入れかわる。X,Yがともに数のときの写像を関数といい,幾何学的な対象については変換といい,X,Yがともに関数のときは演算子または作用素と呼ぶが,厳密な区別はない。→線形写像/等角写像
→関連項目対応
出典 株式会社平凡社百科事典マイペディアについて 情報
写像
しゃぞう
mapping
数学用語で,関数とほとんど同義的に用いられるが,たとえば実数を実数に対応させる関数 y=f(x) についての考え方などを,より一般的,抽象的に拡大して,任意の集合の元を他の集合の元に対応させる規則をさすことが多い。幾何学的な対応を起源にもつので,「変換」と混用する。区別するときは,一つの空間の中での写像のときに変換を用い,一つの空間から他の空間へのときに写像を用いる。これに対し,関数は解析学的対応関係に使用されるのが普通である。しかしこれらの概念の用法の間に厳密な区別はない。
出典 ブリタニカ国際大百科事典 小項目事典ブリタニカ国際大百科事典 小項目事典について 情報
しゃ‐ぞう ‥ザウ【写像】
〘名〙
① 対象物をあるがままに写し描きだすこと。また、その像。
※文芸上の
自然主義(1908)〈
島村抱月〉一一「人生の
精確なる写像といふことを殊に精確といふことに力を入れて主張した」
② 数学で、一つの集合のおのおのの元に、他の集合あるいは同一の集合の元をそれぞれに一つずつ対応させる法則。集合Aの元に集合Bの元を対応させる写像をAからB(の中)への写像という。関数。変換。
③
物理学で、
物体から出た
光線が、鏡やレンズなどによって
反射または屈折された後、集合して再び作られる像をいう。
出典 精選版 日本国語大辞典精選版 日本国語大辞典について 情報
デジタル大辞泉
「写像」の意味・読み・例文・類語
しゃ‐ぞう〔‐ザウ〕【写像】
1 対象物をあるがままに写して描き出すこと。
「人生の精確なる―ということを」〈抱月・文芸上の自然主義〉
2 物体から出た光線が鏡やレンズなどによって反射または屈折されたのち、集合して再びつくられる像。
3 数学で、二つの集合A、Bがあって、Aの各要素aにBの一つの要素bを対応させる規則fをAからBへの写像といい、f:a→bと書く。
出典 小学館デジタル大辞泉について 情報 | 凡例
出典 ASCII.jpデジタル用語辞典ASCII.jpデジタル用語辞典について 情報
しゃぞう【写像 mapping】
2変数の関数f(x,y)は,平面の点(x,y)に,関数の値f(x,y)を,それぞれ定めていると考えられる。この考えを一般にしたものが写像である。つまり,集合Aの各元に,集合Bの元を,ある規則によりそれぞれ定めているとき,この規則をAからBへの写像という。AからBへの写像は,f,φなどの記号を用い,f:A→B,
などと表される。
[写像の値,像,原像]
写像f:A→Bにより,Aの元aに,Bの元bが定まっているとき,aにおけるfの値はbであるとか,fはaをbに写すとかいい,f(a)=b,あるいは単にa↦bで表す。
出典 株式会社平凡社世界大百科事典 第2版について 情報
世界大百科事典内の写像の言及
【関数】より
…
[関数の一般的定義]
前述の関数の概念を一般化して,関数を次のように定義する。 二つの集合X,Yがあって,Xのどの要素xにも,Yの要素yがちょうど一つ対応しているとき,この対応をXからYへの関数,または写像といい,記号fなどを用いて,f:X→Yと書いたり,y=f(x)と書いたりする。前に述べた(イ)~(ニ)の例は,いずれもX,Yが実数の集合の場合であるが,x,yが必ずしも数ではなくても,xを変数と呼び,yはxの関数であるということが多い。…
※「写像」について言及している用語解説の一部を掲載しています。
出典|株式会社平凡社世界大百科事典 第2版について | 情報