百科事典マイペディア 「位相幾何学」の意味・わかりやすい解説
位相幾何学【いそうきかがく】
→関連項目幾何学|曲面|三体問題|トポロジー|一筆書き|結び目理論|メービウスの帯
出典 株式会社平凡社百科事典マイペディアについて 情報
出典 株式会社平凡社百科事典マイペディアについて 情報
出典 精選版 日本国語大辞典精選版 日本国語大辞典について 情報
出典 株式会社平凡社世界大百科事典 第2版について 情報
出典 ブリタニカ国際大百科事典 小項目事典ブリタニカ国際大百科事典 小項目事典について 情報
…(1)数学用語。トポロジーtopologyともいう。数学において極限や連続の概念は中心的役割を演ずるが,これらの概念は実数の集合や平面上の点集合については“近さ”とか“近づく”といった概念を用いて定義される。…
…そこで,同相写像によって変わらないような性質を研究する幾何学というものが考えられる。トポロジーtopologyはこのような研究を主目的とする数学であって,位相幾何学と訳されているように,この幾何学では図形の位置や形相に関した性質で,点の連続性にのみ依存する性質が扱われる。位相幾何学は位置解析学analysis situsという名称でG.W.ライプニッツによって予見されていたが,具体的な業績はオイラーによって初めて与えられた。…
…集合上に〈近さ〉とか〈近づく〉といった概念で表される構造が与えられると,その集合上で極限や連続について論ずることができるが,このような構造をトポロジー(訳して位相)と呼ぶ。また,この構造が内容や方法上で問題となる数学のことを広くトポロジー(訳して位相数学)と呼ぶこともあるが,ふつうはもっと狭く,図形の位置や形状に関する性質で,図形を構成する点の連続性にのみ依存するものを研究の対象とする数学のことをトポロジー(訳して位相幾何学)と呼ぶ。…
…なお,リーマン空間では長さを不変にする変換は一般に恒等変換しかないから,リーマン幾何学はクラインの意味での幾何学とはいえず,リーマン幾何学の発展はエルランゲン・プログラムの思想に破綻(はたん)を生ぜしめた。
[位相幾何学]
先に,ユークリッド幾何学,射影幾何学では,それぞれ合同変換,射影変換によって変わらないような幾何学的性質が研究されると述べたが,合同変換や射影変換よりはるかに一般的なものに位相変換または同相写像と呼ばれるものがある。これは二つの図形の間の1対1対応で,それおよびその逆写像が連続となるようなものである。…
…集合上に〈近さ〉とか〈近づく〉といった概念で表される構造が与えられると,その集合上で極限や連続について論ずることができるが,このような構造をトポロジー(訳して位相)と呼ぶ。また,この構造が内容や方法上で問題となる数学のことを広くトポロジー(訳して位相数学)と呼ぶこともあるが,ふつうはもっと狭く,図形の位置や形状に関する性質で,図形を構成する点の連続性にのみ依存するものを研究の対象とする数学のことをトポロジー(訳して位相幾何学)と呼ぶ。リスティングJ.B.Listingは1847年に著書《Vorstudien zur Topologie》を出版し,トポロジーということばを使っているが,この数学の実質的創始者であるH.ポアンカレは,この数学をanalysis situs(位置解析学)と呼び,長らくこのことばが使われていた。…
※「位相幾何学」について言及している用語解説の一部を掲載しています。
出典|株式会社平凡社世界大百科事典 第2版について | 情報
イタリア系フランス人の天文学者。カシニともいう。ニース近郊に生まれ、ジェノバで聖職修業中に、ガリレイの弟子カバリエリに師事して数学・天文学を修得し、1650年25歳でボローニャ大学教授に任ぜられた。惑...